Assessment of two hemispherical and hemispherical-conical miniature sources used in electronic brachytherapy using Monte Carlo Simulation

نویسندگان

  • Barat Barati
  • Mansour Zabihzadeh
  • Mohammad Javad Tahmasebi Birgani
  • Nahid Chegini
  • Mojtaba Hoseini Ghahfarokhi
  • Jafar Fatahiasl
چکیده

INTRODUCTION Since the heart of the electronic brachytherapy system is a tube of a miniature x-ray and due to the increasing use of electronic brachytherapy, there is an urgent need for acquiring knowledge about the X-ray spectrum produced, and distribution of x-ray dose. This study aimed to assess the optimal target thickness (TT), the X-ray source spectrum, and the absorbed dose of two miniature sources of hemispherical and hemispherical-conical used in electronic brachytherapy systems, through a Monte Carlo simulation. METHODS Considering the advantages of MCNPX Code (2.6.0), two input files corresponding to the characteristics of the investigated miniature sources were prepared for this code and then were used for simulation. The optimal thickness (OT) of gold and tungsten targets was determined for the energy levels of 40, 45, and 50 kilo-electron-volts. RESULTS In this study, the values of the size of the optimal thickness of 0.92, 1.01 and 1.06 μ for gold target and values of 0.99, 1.08 and 1.34 μ for tungsten target were obtained for energies 40, 45 and 50 keV that using these values, the optimum thickness of 0.92, X-ray spectrum within and outside targets, axial and radial doses for the used energy were calculated for two miniature sources. CONCLUSION It was found that the energy of incident electron, target shape, cross-sectional area of the produced bremsstrahlung, atomic number of materials constituting of the target and output window are the factors with the greatest impacts on the produced X-ray spectrum and the absorbed dose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Effect of Source Geometry on the Output of Miniature X-ray Tube for Electronic Brachytherapy through Simulation

Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output.Method: Five sources were simulated based on problems e...

متن کامل

Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sourc...

متن کامل

Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the m...

متن کامل

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations

Background: Iodine brachytherapy sources with low photon energies have been widely used in treating cancerous tumors. Dosimetric parameters of brachytherapy sources should be determined according to AAPM TG-43U1 recommendations before clinical use. Monte Carlo codes are reliable tools in calculation of these parameters for brachytherapy sources. Materials and Methods: Dosimetric param...

متن کامل

Dosimetric characteristics of 137Cs sources used in after loading Selectron system by Monte Carlo method

Background: For an effective treatment planning in brachytherapy, it is necessary to know the accurate source dosimetric information such as air kerma strength, exposure rate constant, dose rate constant and redial dose distribution. The usual method to determine these factors is thermo luminescent dosimeter (TLD) dosimetry. Nowadays, another more accurate method is known to be the Monte Carlo ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017